Paradoxical effect of minocycline on established neuropathic pain in rat
نویسندگان
چکیده
Neuropathic pain occurs after peripheral nerve damage, inflammation or infection. In this situation, microglial cells become activated and play a key role in producing pain. Minocycline (microglia inhibitor), was reported to reduce pain when used preventively. However, it seems that, when used after nerve injury, results in its pain reducing effects are different. In this regard, to assess the pain reducing differences of minocycline, neuropathic pain was induced by the ligation of the sciatic nerve in the rat which is recognized as chronic constriction injury (CCI) and minocycline was administered before and after sciatic nerve injury. Wistar male rats (200-250 g, n=6) were used in these experiments. Rats were distributed in various groups: vehicle-treated CCI (control), sham-operated and minocycline-treated CCI groups. In the first part of the experiment (pre-injury study), minocycline (10, 20, 30 and 40 mg/kg,) was injected one hour before surgery and then daily for two weeks. In the second part (post injury study), minocycline was administered: 1: at day one after nerve damage once a day to day 14, 2: at day seven after surgery and continued daily until day 14. Analgesimeter for thermal hyperalgesia and von Frey hairs for mechanical allodynia were used to evaluate pain behavior. Thermal hyperalgesia and mechanical allodynia were attenuated significantly, when minocycline used before surgery, while it was not able to reduce pain behavior administered after surgery. It seems that, in spite of what some previous studies have reported, here, minocycline is not able to attenuate established neuropathic pain.
منابع مشابه
Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain
Background: Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppress...
متن کاملMinocycline through attenuation of oxidative stress and inflammatory response reduces the neuropathic pain in a rat model of chronic constriction injury
Objective(s): Several lines of evidence showed that minocycline possesses antioxidant and anti-inflammatory properties. This study aimed to demonstrate the effects of minocycline in rats subjected to chronic constriction injury (CCI). Materials and Methods: In this study four groups (n = 6–8) of rats were used as follows: Sham, CCI, CCI + minocycline (MIN) 10 mg/Kg (IP) and CCI + MIN 30 mg/Kg (...
متن کاملExpression profiling of genes modulated by minocycline in a rat model of neuropathic pain
BACKGROUND The molecular mechanisms underlying neuropathic pain are constantly being studied to create new opportunities to prevent or alleviate neuropathic pain. The aim of our study was to determine the gene expression changes induced by sciatic nerve chronic constriction injury (CCI) that are modulated by minocycline, which can effectively diminish neuropathic pain in animal studies. The gen...
متن کاملMinocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain
BACKGROUND Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppresse...
متن کاملCombination of tramadol with minocycline exerted synergistic effects on a rat model of nerve injury-induced neuropathic pain.
Neuropathic pain is a refractory clinical problem. Certain drugs, such as tramadol, proved useful for the treatment of neuropathic pain by inhibiting the activity of nociceptive neurons. Moreover, studies indicated that suppression or modulation of glial activation could prevent or reverse neuropathic pain, for example with the microglia inhibitor minocycline. However, few present clinical ther...
متن کامل